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Abstract 

The goal of this research project is to improve the operational efficiency of shared-ride mobility-

on-demand services (SRMoDS). SRMoDS ranging from UberPool to micro-transit have the 

potential to provide travelers mobility benefits that are comparable to existing ride-hailing 

services without shared rides such as UberX, but at a lower cost and with fewer harmful 

externalities. To meet the project’s goal, this study proposes a bi-criteria network pathfinding 

approach that considers proximity to potential future traveler requests in addition to travel time. 

This pathfinding approach was built on top of state-of-the-art dynamic vehicle routing and 

matching  modules. The study tests the proposed pathfinding approach using the network of the 

Anaheim, CA. The results indicate that the proposed bi-criteria approach can potentially reduce 

both traveler waiting and in-vehicle travel time; however, the effectiveness depends on several 

factors. Important factors include the relative supply-demand imbalance as well as several 

hyperparameters in the optimization-based control policy. Moreover, the results indicate that 

the bi-criteria policy is only advisable when the SRMoDS vehicle has one or fewer in-vehicle 

passengers. Although the operational benefits found in this study are relatively small, future 

research efforts related to tuning hyperparameters should allow bi-criteria pathfinding to 

significantly improve SRMoDS.   
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Non-myopic pathfinding for shared-ride vehicles: A bi-criteria 
best-path approach considering travel time and proximity to demand  
 

Executive Summary 

Mobility-on-demand (MoD) services have become a relatively popular mode of transportation in 

urban areas. MoD service providers such as Lyft and Uber leverage the empty space inside private 

vehicles and provide convenient and affordable mobility to travelers. Shared-ride MoD services 

(SRMoDS) provide additional benefits to travelers, namely, lower costs and possibly shorter wait 

times, at the expense of slightly longer travel times compared to MOD services without shared 

rides. Moreover, SRMoDS provide additional societal benefits compared to MoD services without 

shared rides, such as increased vehicle occupancies thereby potentially reducing traffic 

congestion and vehicle emissions. Studies in the literature suggest that compared with MoD 

services without sharing, SRMoDS can reduce vehicle miles traveled (VMT) and vehicle hours by 

20% to 30%, respectively (1). 

While the benefits for travelers and society associated with SRMoDS are clear and significant, 

these services have not seen the market share of MoD services without shared rides. The reasons 

for this are many but undoubtedly the operational challenges associated with SRMoDS, 

compared with non-shared-ride services, play an important role. As such, the goal of this study 

is to improve the operational efficiency of SRMoDS with a focus on using a bi-criteria pathfinding 

approach to assign vehicles to network paths between traveler pickup and drop-off (PUDO) 

locations.  

To serve a set of traveler requests, a SRMoDS operator usually considers the following 

operational subproblems: (a) Filtering available vehicles for each traveler request; (b) Estimating 

a ‘cost’ for each feasible traveler-vehicle combination; (c) Matching vehicles to travelers; and (d) 

Sequencing traveler PUDO tasks for individual vehicles to serve travelers. Additionally, many 

SRMoDS try to actively reposition vehicles to balance supply and demand. In subproblems (b) 

and (d) as well as the repositioning subproblem, the service provider almost exclusively, in the 

literature and in practice, assigns vehicles to the path with the shortest travel time. Using the 

shortest time path minimizes travel time for in-vehicle passengers in the myopic (i.e., short-

sighted) sense but may not be the most efficient choice for overall system performance. Since 

the shortest path often consists of highway links where new demands do not originate, traveling 

on highway links and on the shortest path limits a vehicle’s potential to pick up new requests en-

route to its next PUDO location. This study aims to improve the operational performance of 

SRMoDS via considering both travel time and proximity to future demand when assigning 

vehicles to network paths. This approach is referred to as the bi-criteria pathfinding approach. 
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There are several potential benefits of a bi-criteria pathfinding approach. First, considering future 

demand when assigning vehicles to paths can potentially reduce waiting time for incoming 

travelers. Second, considering demand proximity can increase the possibility that a vehicle is 

shared, thereby increasing vehicle occupancies, and decreasing VMT. Third, combining the above 

two points, bi-criteria pathfinding can increase system-wide service efficiency and reduce 

negative environmental impacts of MOD services.  

SRMoDS have received considerable attention in the recent academic literature (1–5). However, 

to the best of the authors’ knowledge, all the operational studies that incorporate road networks 

assign vehicles to the shortest path between their current location and next PUDO location. The 

major research questions addressed in this study on bi-criteria pathfinding include: (a) When 

should a vehicle consider bi-criteria paths? (b) How should the bi-criteria paths be decided? and 

(c) What are the benefits of using bi-criteria pathfinding? To answer these questions, this study 

employs an agent-based dynamic stochastic simulation to test several different bi-criteria 

pathfinding policies against a conventional shortest path approach for SRMoDS. 

In the shortest path approach, the only data needed to compute the optimal path are the link 

travel times. Conversely, the bi-criteria pathfinding approach requires both link travel times and 

a measure of demand proximity (or a reward) for each link. To obtain a reward on each link, the 

study first needs to determine the potential origin-destination demand ‘flows’ a vehicle can 

reasonably serve given its current location and its planned sequence of PUDO tasks. This 

directional demand eventually needs to be converted to a reward on each link.  This study 

develops and presents a new algorithm (Algorithm 1) to estimate the potential demand on links, 

as well as the combined ‘cost’ of travel time and potential demand on links. 

To test the effectiveness of bi-criteria pathfinding, this study simulates the operations of a 

SRMoDS using travel demand and roadway network data for Anaheim, California. Simulation 

results illustrate the benefits of bi-criteria pathfinding while at the same time unveiling the 

conditions that limit the effectiveness of bi-criteria pathfinding. Results indicate that bi-criteria 

pathfinding can reduce traveler waiting and in-vehicle time under certain conditions. The study 

also finds that the supply of vehicles and total number of demand requests have a large impact 

on the effectiveness of bi-criteria pathfinding. In general, bi-criteria pathfinding is more effective 

when the system is mildly undersupplied to mildly oversupplied. Moreover, rather than always 

assigning vehicles to paths using the bi-criteria approach, when the number of passengers 

currently inside a vehicle exceeds one, the shortest path approach is superior.  

As this represents the first study to consider non-shortest-paths when assigning SRMoDS to 

network paths, there is significant potential to improve the bi-criteria pathfinding control policies 

and algorithms proposed in this study. While there is significant variance in the performance gap 

between bi-criteria path assignment and shortest path assignment, improved control policies and 

properly tuned hyperparameters should both decrease the performance gap variance across 

scenarios and also increase the mean performance gap measure under most conditions.   
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Introduction  

The ubiquity of wireless mobile internet and smartphones has led to the proliferation of mobility-

on-demand (MoD) services offered by companies like Uber and Lyft. The growth and market 

share of MoD services suggest they are already providing significant mobility benefits to 

individual travelers in terms of cost and/or convenience relative to other travel options. 

Moreover, shared-ride MoD services (SRMoDS), via increasing vehicle occupancy relative to 

individually owned and operated vehicles, may be able to simultaneously benefit society through 

decreases in vehicle miles traveled (VMT), traffic congestion, and vehicle emissions. However, 

the market share of SRMoDS, such as Uber Pool and Lyft Line, appear to be significantly lower 

than MoD services without shared rides such as UberX and conventional Lyft (6).  Moreover, the 

demand for SRMoDS offered by transit agencies (e.g., flexible, demand-adaptive, and demand-

responsive transit) and microtransit companies also pale in comparison to taxi services and the 

MoD services of Uber and Lyft without shared rides. There are many reasons for this, but one of 

them is certainly the operational inefficiency of existing SRMoDS. 

The overarching goal of this study is to improve the operational efficiency of SRMoDS. Several 

research studies in the recent literature address SRMoDS operational problems (4, 7–11). 

However, the primary focus has been on dynamically assigning new user requests to shared-ride 

vehicles and then inserting each user’s pickup and drop-off (PUDO) locations within his/her 

assigned vehicle’s existing route/schedule. This research study addresses a separate and often 

overlooked subproblem associated with operating SRMoDS, namely, the assignment of vehicles 

to network paths as the vehicles move between PUDO locations. A network path is an ordered 

sequence of nodes or links in a road network that a vehicle should traverse between PUDO 

locations. To the best of the authors knowledge, this network path subproblem has not been 

examined in the context of MOD services, and given only scant attention in dynamic freight 

pickup and delivery literature (12). 

In practice and in the academic literature, individual shared-ride vehicles are assigned to the 

shortest travel time paths between PUDOs, in the same way drivers of personal vehicles and taxis 

take the shortest path between trip origins and destinations. However, this intuitive strategy is 

myopic for shared-ride vehicles because it does not consider the (high) likelihood of new users 

requesting service during the time the shared-ride vehicle travels between PUDOs. The bi-criteria 

network pathfinding strategy proposed in this study considers both travel time and proximity to 

expected future demand when assigning a shared-ride vehicle to a network path. While the MoD 

fleet controller should certainly still aim to minimize each vehicle’s travel time between PUDO 

locations, to increase sharing opportunities and prevent the shared-ride vehicle from needing to 

detour from high-speed, low-demand areas back to lower speed, high-demand areas to pick up 

new user requests, the MoD controller should consider the proximity of network paths to 

expected future demand.  
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To meet the goal of improving the operational efficiency of shared-ride MoD services, this study 

conceptualizes, defines, models, and develops solution algorithms for the bi-criteria shared-ride 

best-path problem, considering travel time and proximity to demand. The study compares the 

bi-criteria pathfinding approach with the shortest path approach, within the context of operating 

a SRMoDS in Anaheim CA.  

The remainder of the report is structured as follows. The next section provides a conceptual 

framework and visualization of the bi-criteria pathfinding approach. The following section 

provides relevant background information and reviews relevant studies in the literature. The 

following two sections present the formal problem statement as well as the proposed solution 

methodology. The penultimate section presents a case study and then discusses the 

computational results comparing the bi-criteria and shortest path approaches. The final section 

concludes the paper with a summary and a discussion of future research objectives.  

Conceptual Framework 

Error! Reference source not found. displays pictorially the static bi-criteria best-path problem, 

considering travel time and proximity to demand. The MoD fleet controller must assign a shared-

ride vehicle to a network path to connect the traveler’s pickup (blue triangle) and drop-off (blue 

star) locations. The MoD controller’s bi-criteria objective involves minimizing travel time and 

maximizing proximity to expected future demand. In Error! Reference source not found., the link 

travel times are displayed below the links, whereas the darkness of the area represents the 

expected future demand rate—darker implies a higher demand rate. The minimum travel time 

component of the objective drives the controller to assign the shared-ride vehicle to the shortest 

path in terms of travel time. Conversely, the maximum proximity to demand component of the 

objective drives the controller to assign the vehicle to the links in the dark-green portion of the 

region.  

The red dashed line in Error! Reference source not found. displays the conventional shortest 

travel time path between the PUDO locations. Essentially, the controller immediately moves the 

vehicle from the user’s pickup location in the high-demand, low-speed area (e.g., a business 

district) directly to the low-demand, high-speed area (e.g., a highway running parallel to the 

business district). From there, the vehicle takes the highway to the exit nearest the user’s drop-

off location. Once the vehicle gets on the highway, it is either unlikely to be assigned to a new 

user request before the next drop-off location, or it would require a significant detour to pick up 

a new request. 
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Figure 1. Paths for shortest path (red) and bi-criteria (purple) strategies 

 
 

The purple dashed line in Error! Reference source not found., displays a possible bi-criteria 

network path a vehicle may take between the user’s PUDO locations if the controller considers 

proximity to demand in addition to travel time. Rather than immediately moving to the low-

demand, high-speed area, the bi-criteria vehicle moves to the moderate-demand, moderate-

speed area from the high-demand, low-speed area. Under this approach, if a new demand 

request arises in the moderate-demand area, the vehicle may not even need to divert its path to 

pick up the new request. Similarly, if a new request arises in the high-demand area, the bi-criteria 

vehicle can easily divert to this portion of the network and pick up the new request. The exact 

network path a controller using the bi-criteria approach assigns to a vehicle depends on several 

factors including the remaining occupancy of the vehicle and weight of proximity to demand 

relative to travel time in the objective function. 

Lastly, it is important to note that in Error! Reference source not found. the setting is static and 

deterministic, whereas in the SRMoDS operational problem presented in this study, the setting 

is dynamic and stochastic. This means that as the vehicle traverses a path, either purple or red, 

new requests will enter the system that may or may not be assigned to the vehicle. If the requests 

are assigned to the vehicle, it will likely need to divert from its current path to pick up the newly 
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assigned request. Hence, the network paths for vehicles in a SRMoDS often require updating as 

the real-world operation or simulation advances through the day.  

Background and Literature Review 

Ridesharing, Shared-rides, and Pooled Rides 
Shaheen and Cohen present a taxonomy of rideshare services (1). In their categorization, 

rideshare services include three major classes, namely core pooled services, ridesharing, and on-

demand ride services. Core pooled services define a broad set of services that encompass pooling 

services without smartphone apps (e.g., public transit). Ridesharing consists of general 

carpool/vanpool of family members or coworkers, in which smartphone apps are also not 

necessarily involved. The last category, on-demand ride services, utilize smartphone apps for 

matching drivers and riders in real-time. On-demand ride services are further classified into four 

sub-classes, including ride sourcing (Uber, Lyft), ride splitting (Uber pool, Lyft Line), taxi share, 

and micro transit. Ride splitting is the focus of the study; however, this study refers to ride-

splitting services as SRMoDS.  

The literature illustrates several ways in which SRMoDS services have large social and economic 

benefits. Survey results indicate that pooled services have an average occupancy of 2.1 

passengers per trip (13). Moreover, Ridesharing services reduce VMT, costs for traveler, and road 

network congestion (14). In an early study, Levin et al. simulate the city traffic of Austin with and 

without dynamic ridesharing (another name for a SRMoDS) and find that dynamic ridesharing 

can reduce empty vehicle repositioning trips (15). 

Shared-ride Mobility-on-Demand Service Fleet Operations 
Despite the clear social and economic benefits of SRMoDS, operating SRMoDS is complicated and 

challenging. As new requests want to be served immediately, the system is highly dynamic. And 

because the mobility service provider does not know where and when future requests will arise, 

the system is also highly stochastic. Moreover, in this highly dynamic and stochastic setting, the 

following four computational subproblems require substantial computational resources: (i) 

assigning new requests to vehicles, (ii) sequencing PUDO locations for each vehicle, (iii) assigning 

vehicles to network paths, and (iv) repositioning idle vehicles to achieve a better spatial balance 

between supply and demand. The remainder of this subsection reviews literature and/or 

provides background information related to these four subproblems.  

The first subproblem, matching/assignment of traveler requests to vehicles, is usually referred to 

as a “single driver, multiple rider arrangement”; i.e. a vehicle can simultaneously serve multiple 

riders, while riders will not switch between vehicles (16). The literature models the traveler-

vehicle matching/assignment problem as well as its objective function and constraint set in 

multiple ways. Several objective functions are considered in previous studies, such as minimizing 

total VMT (5, 17), minimizing total delays and waiting time (18), and maximizing the total VMT 

saved (19). Besides the difference in objective functions, the formulation of the problem also 
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differs in terms of the decision variables and constraint set. One stream of models involves an 

integer programming (IP) formulation known as the assignment problem or bi-partite matching 

problem (5, 18, 20). A second stream of models involves a mixed-integer programming 

formulation known as the dial-a-ride problem (DARP) (21–23). The DARP actually integrates 

sequencing PUDO locations (subproblem two) with assigning requests to vehicles. This study 

employs the bi-partite matching problem formulation for the vehicle-traveler assignment 

problem and uses the objective of minimizing VMT.  

The second subproblem, sequencing of PUDO locations, is often modeled as a vehicle routing 

problem (VRP) or more specifically, a DARP or pickup and delivery problem (5, 11). Unlike the bi-

partite matching problem, the VRP and DARP are computationally intensive optimization 

problems. However, if the sequencing of PUDO locations only needs to be done for a single 

vehicle and a few requests, then the problem can be solved quickly. Conversely, if the sequencing 

of PUDO locations is done alongside the assignment of travelers to vehicles, the problem 

becomes impractical to solve exactly in a dynamic/real-time context for even a few vehicles and 

a couple dozen requests. Hence, this study assumes the assignment problem is solved first and 

then the sequencing problem is solved for each individual vehicle. 

The third subproblem, the assignment of vehicles to network paths, has largely been overlooked 

in the academic literature. Many studies do not even include a real road network and in studies 

that do, researchers almost exclusively assign vehicles to the shortest travel time path.  In the 

freight, less-than-truckload literature, Thomas and White present seminal work that considers 

non-shortest travel time network paths between PUDO locations (12). They refer to their 

approach as anticipatory route selection. The current study uses the term network path rather 

than route to differentiate between the third subproblem (i.e., network pathfinding) and second 

subproblem (i.e., sequencing PUDO locations, which is a type of vehicle routing problem).  

The fourth subproblem, vehicle repositioning, can be employed to address spatial imbalances 

between supply and demand, where the spatial mismatch in supply and demand arises from a 

spatial imbalance between trip origins and destinations. To reposition vehicles, some operators 

directly dispatch empty vehicles to the highest demand area. On the contrary, Lei suggests that 

the relocation activities could be more productive if pricing strategies are used to influence path 

choices of riders (24). Lei suggest that lower prices could be assigned to paths that travel through 

areas with high demand to encourage riders to choose those paths (24).  

The potential of shared-ride MoD services to enhance mobility and sustainability has motivated 

several researchers to address the problem recently. To further improve the sustainability of 

SRMoDS, Jung et al. examine SRMoDS with electric vehicles and address the operational problem 

considering re-charging constraints (10). Qian et al. model the taxi group ride problem, and try 

to group travelers with similar origins, destinations, and departure times into the same taxi (19). 

Hence, they do not allow the shared-ride vehicle to pick up other travelers after grouping 

requests together in the origin region. This limits the solution space and the applicability of the 

proposed bi-criteria path-finding approach.  
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Related Dynamic Stochastic Operational Problems in Transportation 
In the case of stochastic dynamic pathfinding, the controller must constantly reconsider the best 

paths of shared-ride vehicles as they traverse the network. This problem falls under the general 

class of stochastic dynamic vehicle routing problems (25). Similarly, the bi-criteria approach falls 

under the general class of anticipatory (or pro-active) approaches to stochastic dynamic 

problems (12, 26, 27), in contrast to reactive approaches.  

Much of the existing research on anticipatory routing is in the freight transportation literature 

and it uses stochastic information about user demand to solve the dynamic vehicle fleet routing 

and scheduling problem (26, 28), rather than the individual vehicle path-finding problem. Most 

of the research on stochastic dynamic vehicle routing problems does not consider path-finding 

in networks (27, 28); this is often because the models do not include physical networks and/or 

congestion effects. Fleischmann et al. present seminal work on stochastic dynamic routing that 

incorporates road networks, congestion, and online traffic information; however, the study 

assigns vehicles to the shortest network paths between PUDO locations (29).  

Other research shows that not forcing vehicles to travel on the shortest network path between 

two points when rebalancing can nearly eliminate the congestion effects of empty vehicle trips 

in MoD systems (30). Conversely, another study considering a real network with a realistic spatial-

temporal demand distribution shows that empty rebalancing trips will increase congestion (31). 

Many existing formulations and operational policies in the dynamic freight/courier vehicle 

routing literature do not allow decisions to be made until vehicles stop at pickup or delivery 

points (27). Under this modeling approach, shortest travel time paths are optimal; however, this 

modeling assumption should be relaxed to allow vehicles to be diverted between PUDO 

locations. 

Bi-criteria Pathfinding  
The bi-criteria best-path problem considering travel times and proximity to demand can be 

thought of as an inverse hazardous materials routing problem (32). In the hazardous material 

transportation problem, the routing decision combines both safety and cost concerns (33, 34).  

From the safety perspective, hazardous materials should be routed away from populous regions. 

From the cost saving perspective, the total travel distance should be minimized. In the hazardous 

materials case, unlike the SRMoDS case, paths near population centers are penalized rather than 

rewarded (35). Early work models the hazardous material routing problem on a Euclidean Plane 

(36). Later research model the problem in a network with stochastic, time-varying travel times 

(37). The solution approaches of multi-objective problems are well-discussed in literature, which 

includes the constraint method (38), convex combination of multi-objectives (33), and dynamic 

programming (39). Recent research also considers equity along with proximity to population 

centers in the transportation of hazardous goods (40). Including equity in the bi-criteria best-path 

problem for MoD shared-ride vehicles is an interesting future research direction that is beyond 

the scope of this study.  
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Problem Statement 

The section presents the SRMoDS operational problem with bi-criteria pathfinding; the model is 

similar to the one presented in Hyland and Mahmassani’s study of a SRMoDS with automated 

vehicles that does not consider pathfinding (2).  

The SRMoDS operational problem is characterized by a fleet of 𝑚 vehicles 𝑉 = {𝑣1, 𝑣2, 𝑣3, … , 𝑣𝑚} 

that aim to serve customers 𝐶 = {𝑐1, 𝑐2, … 𝑐𝑖 , 𝑐𝑖+1 … , 𝑐|𝐶|} who request service during the finite 

time horizon 𝑇 = [0, 𝑡𝑚𝑎𝑥 ], in network 𝐺 = (𝑁, 𝐿) where 𝑁 is the node set and 𝐿 is the link set. 

A link from 𝑁𝑜𝑑𝑒 𝑖 to 𝑁𝑜𝑑𝑒 𝑗 is represented as (𝑖, 𝑗).  

At time 𝑡 = 0, vehicles may be located at one or several depots, or they may be dispersed 

throughout the entire network. Traveler requests follows a stochastic process with a Poisson 

distribution for interarrival times, wherein the demand rate parameter for each node 𝑁 is a 

function of the origin-destination input demand. Each traveler request 𝑐𝑖 comes with a request 

time 𝑡𝑟
𝑖 ∈ 𝑇, pickup location 𝑙𝑝

𝑖 ∈ 𝑁, and drop-off location 𝑙𝑑
𝑖 ∈ 𝑁, a group size 𝑔𝑖, and a time 

window for travel—the latest pickup time 𝑡𝑝
𝑖 ∈ 𝑇 and latest drop-off time 𝑡𝑑

𝑖 ∈ 𝑇. 

The SRMoDS operator must pick up travelers at their requested pickup locations and drop them 

off at their requested drop-off locations. However, the vehicles can pick up additional requests, 

even if there is a traveler currently inside the vehicle. The goal of the SRMoDS operator is to 

efficiently serve the traveler requests via (i) dynamically assigning vehicles to travelers, (ii) 

dynamically sequencing PUDO locations for the assigned requests, (iii) assigning vehicles to 

network paths, and (iv) repositioning idle vehicles requests. Efficiently serving traveler requests 

refers to minimizing wait time, in-vehicle travel time (IVTT), and fleet mileage as well as 

maximizing the number of requests served.   

This study assumes that vehicles do not need to refuel as the analysis period in the study 

represents a peak period of the day, where it should be reasonable to assume that prior to the 

peak period, the vehicles can be refueled and then operate without refueling during the entire 

peak period. 

This paper defines a vehicle task as either picking up or dropping off a traveler. This paper also 

defines a vehicle job as completing the service for a traveler, i.e., a job includes a pickup task and 

a drop-off task. 

Modeling the Dynamics 
Rather than a detailed model of the entire simulation framework, this section presents the state 

variables considered in the simulation model. The state variables needed to model each vehicle 

from the current time period 𝑡 to the end of the analysis period 𝑡𝑚𝑎𝑥  include each vehicle’s 

current location, current occupancy, planned sequence of PUDO task locations, and planned 

network path from its current location to its next PUDO task location.  The state variables needed 

to model each travel request include the request’s elapsed wait time and its current status. 
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Possible traveler statuses include not yet requested, requested but unassigned, assigned but not 

picked up, in-vehicle, and served. The model also captures the current imbalance between supply 

and demand in subregions of the network.  

Solution Methodology 

Overview 
Error! Reference source not found. summarizes the operational approach for solving a SRMoDS 

operational problem (5, 18) in five steps. The five steps are detailed as follows: 

0. Input: Determine the set of unassigned/open traveler requests and the status of every vehicle 

in the fleet. A vehicle’s status includes its current location, occupancy, planned sequence of 

PUDO task locations, and planned network path. 

1. Construct a set of feasible traveler-vehicle pairs from the unassigned requests and vehicles. 

The location of a request and a vehicle’s location, occupancy, and time window constraints 

associated with previously assigned requests are used to determine the feasibility of traveler-

vehicle pairs. This study assumes that a maximum of one traveler request can be assigned to 

a vehicle in one time step. Hence the traveler-vehicle pairs are always one-to-one matching. 

2. Calculate a ‘cost’ metric for each feasible traveler-vehicle combination from Step 2. This study 

defines the cost for a traveler-vehicle combination (𝑐𝑝𝑣) as the total added cost for the in-

vehicle passengers (i.e., detours) in vehicle 𝑣 and the cost to serve the new potential request 

𝑝 (i.e., remaining wait time if assigned). This step implicitly determines the optimal insertion 

point for a new request 𝑝 within vehicle 𝑣’s planned sequence of PUDO tasks. 

3. Solve the traveler-vehicle assignment problem, using the cost metric 𝑐𝑝𝑣 and the objective 

function and constraints displayed in Formulation 1 below. 

4. Reposition empty unassigned vehicles to rebalance supply and demand spatially throughout 

the region. In this study, if a vehicle has been idle for more than 5 minutes, the system will 

search the node with highest demand that is within 2.5 miles of the current vehicle location 

and direct the vehicle toward that node. 

5. Assign vehicles to network paths between their current location and their next PUDO or 

repositioning location using the proposed bi-criteria approach. 
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Figure 2. Solution approach for the Shared-ride mobility-on-demand operating problem with 
bi-criteria pathfinding 

 
 
 

Pairwise Traveler-Vehicle Service Cost 
Let 𝑛𝑡 denote the set of passengers/travelers 𝑃 = {𝑝1, 𝑝2, 𝑝3, … , 𝑝𝑛} ⊂ 𝐶 who request a ride at 

time 𝑡. These travelers can potentially be served by each of the 𝑚 vehicles in the fleet. Steps 1-3 

in Error! Reference source not found. output a ‘service cost’ estimate for all feasible pairs of 

vehicles and travelers. The cost term for each traveler-vehicle pair, denoted 𝑐𝑝𝑣 , could be 

implemented in multiple ways under different scenarios. Typically, 𝑐𝑝𝑣  is calculated as the 

shortest path cost (either distance or time) between a vehicle’s current location and the traveler 

pickup locations (41). This method is most common when shared rides are not offered. In the 

SRMoDS matching problem, the cost term could be treated as the summation of detours and 

wait times for previously and newly assigned travelers where the objective function also includes 

a fixed cost for each request left unassigned (18). In addition, the cost could be also expressed as 

the total cost/time duration for a vehicle 𝑣 to serve scheduled travelers and the new request 𝑝 

(5).  

To determine the pairwise service cost, this study computes the minimum cost to complete the 

existing assigned tasks and the potential pickup. The pairwise service cost for each traveler-

vehicle pair is obtained by solving a single vehicle pickup and delivery problem. When adding a 
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new traveler to the vehicle, the existing sequence of PUDO locations of the vehicle may change. 

For example, in Figure 3, the vehicle has one assigned passenger in the vehicle, and the current 

task is to drop off passenger 1 (the green dashed route). When the potential new job (Traveler 

2) appears, the cost of serving traveler 2 is calculated as the entire orange route. The sequence 

of serving the tasks is also optimized (pick up P2, drop off P1, drop off P2). 

Figure 3: Routing vehicle with a new job 

 

Traveler-Vehicle Assignment Problem 
After calculating the costs for each traveler-vehicle combination, the next step involves solving 

the assignment/matching problem. The general form of traveler-vehicle assignment problem is 

displayed in Formulation 1. 

Formulation 1 

𝑴𝒂𝒙
𝒙𝒑𝒗

∑ ∑(𝒓𝒑 − 𝒄𝒑𝒗) × 𝒙𝒑𝒗

𝒑∈𝑷𝒗∈𝑽

 (𝟏) 

 

subject to: 

∑ 𝑥𝑝𝑣

𝑣

≤ 1, ∀𝒑 ∈ 𝑷 (𝟐) 

∑ 𝑥𝑝𝑣

𝑝

≤ 1, ∀𝒗 ∈ 𝑽 
(3) 

 

𝑥𝑝𝑣 ∈ [0, 1] ∀𝒑 ∈ 𝑷;   ∀𝒗 ∈ 𝑽 
(4) 

 

Where: 

𝑥𝑝𝑣: Binary decision variable, equal to 1 if traveler 𝑝 is served by vehicle 𝑣 

𝑟𝑝:  Reward for serving traveler 𝑝  

𝑐𝑝𝑣: Cost of serving traveler 𝑝 with vehicle 𝑣 
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Constraint (2) ensures that each request is served by one or no vehicle. Constraint (3) guarantees 

that a vehicle is matched with at most one traveler. In a dynamic setting, the problem will be 

solved every time step to handle new traveler requests and previously unmatched travelers. This 

formulation has the feature of total unimodularity. The binary decision variable can be relaxed 

to linear, and the solution algorithm will still return binary values. This property drastically 

reduces the computational complexity of integer programming problem.  

Simonetto et al. (5) write the objective function using a minimization form without a reward term 

and Constraint (3) as a equality constraint. The current study allows travelers to be unmatched 

for a maximum number of 𝑠 time steps, and therefore the inequality constraint is used. The 

reward term for serving traveler 𝑝, denoted 𝑟𝑝 increases by a given amount if the traveler is not 

serviced at the current time step.  

Assigning a Vehicle to a Network Path 
The bi-criteria pathfinding approach considers potential future demand when assigning a vehicle 

to a network path. For a given origin (𝑂)--destination (𝐷) node pair in a directed graph, the bi-

criteria pathfinding problem could be formulated as shown in Formulation 2. 

Formulation 2: 

min
𝑥𝑖𝑗

∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗

𝑗𝑖

 (5) 

max
𝑥𝑖𝑗

∑ ∑ 𝑟𝑖𝑗𝑥𝑖𝑗

𝑗𝑖

 (6) 

 

Subject to: 

∑(𝑥𝑖𝑗 − 𝑥𝑗𝑖)

𝑗

= {
1, 𝑖 = 𝑂
0, 𝑖 ≠ 𝑂, 𝐷

−1, 𝑖 = 𝐷
 (7) 

𝑥𝑖𝑗 ∈ [0,1]   
 

(8) 
 

In the above formulation: 

𝑥𝑖𝑗:  Binary decision variable, equal to one if a link (𝑖, 𝑗) is traversed by the vehicle 

𝑟𝑖𝑗:  Potential reward for travelling on a link (𝑖, 𝑗) 

𝑐𝑖𝑗:  Cost of traversing link (𝑖, 𝑗) 

In formulation 2, the bi-criteria pathfinding problem has two objectives. Objective function (5) is 

the same objective function as in a conventional shortest path problem, which is to minimize the 

path travel time. Objective function (6) incorporates the potential future demand through a 

reward term 𝑟𝑖𝑗. The method to determine 𝑟𝑖𝑗 for each link (𝑖, 𝑗) given a particular vehicle and its 



[Non-myopic pathfinding for shared-ride vehicles] 
 

20 
 

state is presented in the next subsection. Constraint set (7) represents the standard flow 

conservation constraints for the shortest path problem. Formulation 2 also has a totally 

unimodular constraint matrix.  

In order to present a bi-criteria formulation, this paper combines the two objectives into one 

combined objective by assigning a weight to the reward term. The combined objective function 

is presented as follows: 

max
𝑥𝑖𝑗

∑ ∑(𝑤𝑟𝑟𝑖𝑗 − 𝑐𝑖𝑗)𝑥𝑖𝑗

𝑗𝑖

  (9) 

 

In the combined objective, this paper introduces a linear combination term of reward and cost 

by applying a weight coefficient 𝑤𝑟, which is a function of the vehicle’s current occupancy and 

time slack associated with the vehicles existing PUDO tasks. 

𝑤𝑟 = 𝑓(𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦, 𝑡𝑖𝑚𝑒 𝑠𝑙𝑎𝑐𝑘)  (10) 
 

For example, if a vehicle is full or has little time slack for existing tasks, then 𝑤𝑟 = 0 for the 

current task, i.e., bi-criteria paths will not be considered. On the other hand, if the vehicle has 

one passenger inside and considerable time slack for detouring, 𝑤𝑟 will take a positive value, and 

bi-criteria pathfinding is active. 

This study presents several sub-policies for when to employ bi-criteria pathfinding. The 

hypothesis being that when vehicle occupancy is high, bi-criteria pathfinding becomes less 

desirable. Therefore, the following bi-criteria conditions are considered. 

1. The vehicle has only one drop off task remaining. 

2. The vehicle has two drop-off tasks and no pickup tasks remaining.  

3. The vehicle has two drop-off tasks and no pickup tasks remaining OR the vehicle is empty 

and en-route to a pickup task. 

Future Demand and Link Reward for Bi-criteria Pathfinding 
This section presents the method to determine the expected future demand or potential reward 

parameter on each link (𝑖, 𝑗) in the network, 𝑟𝑖𝑗. This study assumes that all demand requests are 

between nodes in the network, and the future demand (O/D table) is known.  

For a SRMoDS vehicle, when it attempts to detour to acquire additional demand, it considers 

both the future demand requests’ origins and destinations. It is meaningless to consider future 

potential trips requests with locations that are far away from the vehicle’s current path.  

Therefore, the reward 𝑟𝑖𝑗 is vehicle dependent, and it depends on the vehicle’s current location 

and its next PUDO task location. This research proposes the following method to compute 

potential demand on links (reward) given a vehicle’s current location (i.e., origin) and next PUDO 

task location (i.e., destination). 
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Algorithm 1: Link Demand Estimation Algorithm 

Input:  
An Origin/Destination Pair [𝑜, 𝑑] 
Time Window 𝑡 
𝑁 = Set of all Nodes in the Network 
𝑁𝐷 = Set of all Demand Nodes in the Network 

𝐿 =   {𝑙𝑖𝑗} Set of links in the network from node 𝑖 to node 𝑗.  𝑖, 𝑗 ∈ 𝑁 

𝐷𝑒𝑚𝑎𝑛𝑑 = {𝐷𝑒𝑚𝑎𝑛𝑑𝑚𝑛𝑡  ∀ [𝑚, 𝑛] ∈ 𝑁𝐷 × 𝑁𝐷}  
Output: 
Set of potential demand on all links in the network for the given 𝑜, 𝑑, 𝑡 

𝑅𝑜𝑑𝑡 = {𝑟𝑖𝑗  ∀ 𝑙𝑖𝑗 ∈ 𝐿}    

Initialization: 

𝑅𝑜𝑑𝑡 = {0 ∀ 𝑙𝑖𝑗 ∈ 𝐿}   

Procedure: 
Draw an ellipse with its foci at (𝑜, 𝑑)  and major axis length: 𝑑𝑜𝑑 +
 𝑑𝑒𝑡𝑜𝑢𝑟𝑚𝑎𝑥 

 

          𝑑𝑜𝑑 = Euclidean distance between 𝑜, 𝑑 
          𝑑𝑒𝑡𝑜𝑢𝑟𝑚𝑎𝑥 =  min(5,0.25 ∗ 𝑑𝑜𝑑)    (Distances in miles) 
Select all demand nodes that fall within the ellipse: these are the intermediate nodes. 
          𝐼 = Set of all Demand Nodes that fall within the ellipse 
Select all O-D pairs between demand nodes within the ellipse excluding intranodal trips 
         𝑆 =  𝐼 × 𝐼 − { (𝑖, 𝑖)  ∀ 𝑖 ∈ 𝑆  } 
Also add O-D pairs that have their origin in 𝐼 but destinations in 𝑁𝐷 − 𝐼 but shortest path passes 
through 𝑑 
         For 𝑚 ∈ 𝐼 
                  For 𝑛 ∈ 𝑁 − 𝐼 
                           𝑆𝑃𝑚𝑛𝑡 =  Shortest Path between (𝑚, 𝑛) in time window 𝑡 
                           If 𝑑 ∈ 𝑆𝑃𝑚𝑛𝑡 
                                    𝑆 =  𝑆 ∪ { (𝑚, 𝑛) } 
                           End If 
                  End For 
         End For 
Assign demand from origin nodes in 𝑆  to outgoing links that are on the Shortest Path to their 
destination nodes in 𝑆  
For (𝑚, 𝑛) ∈ 𝑆 
        𝐿𝑚 = Set of all outgoing links from 𝑚 
        For 𝑙𝑖𝑗 ∈ 𝐿𝑚  

                If 𝑙𝑖𝑗 ∈ 𝑆𝑃𝑚𝑛𝑡 

                        𝑟𝑖𝑗 = 𝑟𝑖𝑗 + 𝐷𝑒𝑚𝑎𝑛𝑑𝑚𝑛𝑡 

                End If                 
        End For 
End For 
Return: 𝑅𝑜𝑑𝑡 
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Figure 4 illustrates the above algorithm for calculating potential future demand on the links of 

the Anaheim network for a sample Origin-Destination Pair. Here, the vehicle is currently at Origin 

Node 316 and heading to Destination Node 406. The ellipse represents the maximum Euclidean 

detour range for the vehicle.  

Figure 4: Illustrative Example of Calculating Potential Demand on Links 

 

 

Under a shortest path approach, the shared-ride vehicle takes the shortest path from Node 316 

to Node 406. The potential link demands illustrated in 4 indicate the demand a shared vehicle is 

likely to receive while traversing the link. The motivation behind assigning a vehicle to a non-

shortest path to its destination is to make the vehicle travel through a path in which trips in the 

direction of the vehicle are likely to get requested. This is done by evaluating the trade-offs 

between the cost of traversing a link, and the potential benefit or reward of additional 

demand/requests that are likely to be generated on the link. This is done by calculating a bi-

criteria cost function that subtracts the potential reward of traveling on a link from the cost of 

traveling the link. 
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𝑐𝑖𝑗
𝑏 = 𝛼 × 𝑐𝑖𝑗 − 𝛽 × 𝑟𝑖𝑗 (11) 

where, 

𝑐𝑖𝑗
𝑏   is the combined bi-criteria cost of traversing link connecting nodes (𝑖, 𝑗) 

𝛼  is the cost coefficient parameter 

𝑐𝑖𝑗   is the cost of traversing the link 𝑖, 𝑗 (Travel time/Distance) 

𝛽  is the reward/demand coefficient 

𝑟𝑖𝑗  is the potential reward/demand of traversing link connecting nodes (𝑖, 𝑗) 

The reward coefficient parameter 𝛽 can be thought of as the marginal monetary benefit that the 

vehicle fleet owner receives for every additional demand/request. Similarly, the cost coefficient 

parameter 𝛼 can be considered as the marginal cost incurred for every additional unit distance 

or time of traversing on a link. Links that see very high demand may have a zero or negative 

combined weighted bi-criteria cost. The weighted costs of such links are rescaled to have a small 

positive value in the range of [0.001, 0.002] in order to have all links have positive costs to solve 

Formulation 2 using standard algorithms that assume non-negative link costs. The optimization 

algorithm returns a bi-criteria path for the vehicle between its current location and the 

destination it is heading to that has the optimal demand versus cost trade-off value. 

Computational Results 

Case Study Overview 
To analyze the proposed bi-criteria pathfinding approach, this study applies the proposed 

approach to the Anaheim, CA network. The network information, including origin-destination 

(OD) demand data, was downloaded from an open data source in GitHub (Access Date: February 

1, 2021). Additional information on the network and demand data is provided in the ‘Data 

Management’ section. The “Data Management” section also lists the software developed for this 

research.  

At the beginning of the simulation, each traveler is assigned a random request time. Each 

traveler’s PUDO locations are assigned to reproduce the OD demand distribution. Each traveler 

also has a maximum tolerance of waiting time before pickup of 10 mins. If the traveler has not 

been picked up by any vehicle before the maximum waiting time, the traveler will leave the 

system and be marked as a ‘lost’ customer. Vehicles are randomly dispersed throughout the 

network to begin the simulation. A vehicle has a capacity of 3 unique requests (rather than 3 

travelers), as each request may include more than one traveler.  

The Anaheim network consists of 401 nodes (223 nodes with demand) and 854 links. The network 

is shown in Figure 5. The analysis period for the study is 3 hours, representing a peak period. To 

evaluate the effectiveness of bi-criteria pathfinding, the study analyzes the bi-criteria pathfinding 
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approach under different fleet sizes (20, 50, 100, 200 vehicles), different number of traveler 

requests (ranging from 100 to 2,100), and different reward coefficients for potential demand 

(0.01, 0.1, 0.5,1). In most cases, the computational results compare the bi-criteria pathfinding 

approach with the shortest path approach. The study also compares the performance of the bi-

criteria approach under three different conditions. The conditions vary in terms of when bi-

criteria pathfinding is activated. The three conditions include: 

1. The vehicle has only one drop off task remaining. 

2. The vehicle has two drop-off tasks and no pickup tasks remaining.  

3. The vehicle has two drop-off tasks and no pickup tasks remaining OR the vehicle is empty 

and en-route to a pickup task. 

In total, the study simulates 160 scenarios to compare shortest-path-only pathfinding and bi-

criteria pathfinding.  

Three performance metrics are deployed to evaluate the effectiveness of bi-criteria pathfinding 

approach. The specific definitions of the performance metrics are as follows. 

- Average Waiting Time: The average time duration for a traveler after making a request 

until being picked up by a service vehicle. 

- Average In-Vehicle Time (IVTT): The average time duration for a traveler after being 

picked up until service completion. 

- Average Total time: The average total time duration for a traveler between requesting 

service and service completion. 
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Figure 5: Anaheim Network 

 

 

The Impact of Fleet Size and the Number of Requests 
The fleet size (supply of vehicles) and the number of requests (demand) are the fundamental 

factors that impact the performance of the SRMoDS and pathfinding approaches. In addition, the 

impact of fleet size is also correlated with the network size. Either a large network with few 

vehicles (a sparse case) or a small network with numerous vehicles (a dense case) will result in 

poor performance metrics. In order to better measure the impact of vehicle supply and travel 

demand, this study introduces the supply ratio metric, to measure the relative sufficiency of 

supply. Given the total number of SRMoDS vehicles and the total demand size, the supply ratio 

is calculated as follows: 

𝑠𝑢𝑝𝑝𝑙𝑦 𝑟𝑎𝑡𝑖𝑜 =
𝐹𝑙𝑒𝑒𝑡 𝑠𝑖𝑧𝑒 × 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑆𝑒𝑟𝑣𝑖𝑐𝑒 𝑇𝑖𝑚𝑒 𝑓𝑜𝑟 𝑎 𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟 × 𝐷𝑒𝑚𝑎𝑛𝑑 𝑠𝑖𝑧𝑒
 

When the supply ratio is close to 0, it means the current fleet size is undersupply for the current 

demand size. When supply ratio is a large number, it is an indication of oversupply. 

In this subsection, we use a fleet size of 100 to demonstrate the effectiveness of bi-criteria 

pathfinding. Figure 6 includes the differences in waiting time, IVTT, total time, and travelers 

served between bi-criteria pathfinding and short path approaches. By analyzing the wait time, 

we find that for a fleet size of 100 and a reward coefficient of 0.1, bi-criteria pathfinding reduces 
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both waiting time and IVTT for the cases where the total request is between 300 and 1300. The 

corresponding supply ratio for this range is between 2.78 to 0.55. Qualitatively this supply ratio 

range represents a slight undersupply to slight oversupply. On the other hand, when the fleet 

size is relatively larger (extreme oversupply) or too small (extreme undersupply) with respect to 

the demand size, bi-criteria pathfinding may actually increase waiting time and/or IVTT. Similar 

trends are seen for Vehicle Hours Travelled (VHT). 

A potential explanation for the impact of fleet size on the effectiveness of bi-criteria path could 

be as follows. When the fleet size is relatively large, especially for an extreme oversupply case, a 

new traveler request would often be surrounded by a considerable number of available vehicles, 

which could also be empty (i.e., directly available). Under these cases, using bi-criteria 

pathfinding may cause the in-use vehicles to unnecessarily detour, and therefore increase the 

waiting time and IVTT for travelers relative to always assigning vehicles to the shortest path. 

However, when the supply ratio is within a normal range (0.55 to 2.78 for the 100-vehicle case), 

encouraging the usage of bi-criteria pathfinding would proactively send vehicles to potential high 

demand locations, which would result in a reduction in waiting and IVTT. 

Notably, the results in Figure 6 show a non-monotonic relationship between demand or supply 

ratio and the performance gap between bi-criteria paths and shortest paths. The lack of 

monotonicity and the variance in the results indicate that there are other important factors that 

influence the performance of both the bi-criteria paths and shortest paths. We believe both 

endogenous factors like hyperparameters in the operational policy and exogenous factors like 

the spatial distribution of demand are impacting the pathfinding algorithms performance. Hence 

future research should examine how internal factors, external factors, and the interaction 

between internal and external factors impact fleet performance in the context of bi-criteria 

pathfinding.  
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Figure 6: Difference between shortest path and bi-criteria approaches for different fleet sizes 
and number of requests (time in mins). 

 

 

The Impact of Reward Coefficient 
The reward coefficient represents the weight assigned to potential future demand on links 

relative to link travel times. The magnitude of the reward coefficient indicates the relative 

importance of assigning vehicles to paths in high-demand areas compared to shortest time paths. 

When the reward coefficient equals zero, the bi-criteria approach becomes the shortest travel 

time approach. In this section, we test the impact of the reward coefficient on the effectiveness 

of bi-criteria pathfinding. 

Figure 7 displays the differences in waiting time, IVTT, and total travel time for fleet size = 100 

and bi-criteria condition 1 under different demand levels. Figure 7 indicates that for the fleet size 

of 100, the reward coefficient of 0.1 outperforms the other coefficients. The reward coefficient 

of 0.1 saves travel time for the cases where total requests are between 300 and 1300. On the 

other hand, larger reward coefficients, e.g., 0.5 and 1, do not perform well when demand is 

relatively high.  
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Figure 7: Comparison of shortest path and bi-criteria approaches under different reward 
coefficients and number of requests (fleet size = 100). 

 

 

The results in Figure 7 once again show quite a bit of variance. Although the reward coefficient 

of 0.1 regularly outperforms the shortest path approach, the relative gap is non-monotonic with 

the number of requests and the variance is relatively high. Moreover, the variance with the larger 

reward values is much greater.  

These results indicate that the reward coefficient should probably not be static throughout the 

entire simulation period but actually be responsive to the current state of the system. Moreover, 

the reward coefficient should like vary with each individual vehicle based on the vehicle’s status 

and the status of the system.  

The Impact of Bi-criteria Conditions 
This subsection presents the comparison of the three bi-criteria conditions. In general, Condition 

3 implements bi-criteria pathfinding more often than Condition 2 and Condition 2 implements 

bi-criteria pathfinding more often than Condition 1.  

Figure 8 indicates that in most cases, Condition 1 outperforms both Condition 2 and 3 in terms 

of both waiting time and IVTT. All conditions have similar trends over waiting time saved, but 
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Condition 1 is more stable in terms of IVTT. It is worth noting that Condition 1, as the simplest 

policy, leads to the best performance of bi-criteria pathfinding. The possible explanation could 

be as follows. Under Condition 2 and 3, though a vehicle is assigned to bi-criteria path, it may not 

be able to serve additional requests due to time window constraints. This finding provides 

managerial insights that when travelers have a low tolerance of waiting and travel duration, bi-

criteria pathfinding should only be considered in the case where the vehicle is relatively empty. 

In future studies, time window constraints of vehicles could be incorporated directly into bi-

criteria pathfinding.  

Figure 8: Comparison of different bi-criteria conditions across different number of requests 
(fleet size = 100). 

 

 

Summary of Key Findings and Limitations of Methodology 
From the above discussion, we find that bi-criteria pathfinding outperforms the shortest path 

approach in several cases. The effectiveness of bi-criteria pathfinding depends on various factors, 

including fleet size, demand size, the choice of reward coefficient, and bi-criteria conditions. 

In summary, bi-criteria pathfinding could save both waiting time and IVTT for travelers. The total 

saving is around 3% to 5% of the total service time on average under Condition 1 and a reward 

coefficient of 0.1, but there is considerable variation in the performance. The results also indicate 
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that in order for bi-criteria pathfinding to be effective, the balance between supply and demand 

should not be highly uneven in either direction.  

Due to the complexity of the problem, there are certain limitations of this study. First, the method 

of estimating demand, 𝑟𝑖𝑗 , on links could be improved. The current method of estimation 

incorporates the directionality of vehicles, but additional information on vehicles should receive 

consideration, such as, occupancy and detour time limitation. More importantly, it might make 

sense to not only consider expected future demand on each link but actually the expected 

difference between future demand and supply on/around the link. For example, if an area of the 

network, call it area A, tends to have high demand but a lot of vehicles are already in area A 

and/or will travel through area A, vehicles from other areas should not detour into area A. 

The second possible improvement mentioned previously is the hyperparameters in the bi-criteria 

pathfinding objective function (i.e., the weight for expected future demand) should not be static 

over the entire simulation and should not necessarily be the same across all vehicles. Rather the 

hyperparameters should likely be a function of the state of the vehicle (e.g., occupancy level, 

remaining trip distance, proximity to demand) and the state of the system (e.g., supply ratio). 

Another relevant factor is the vehicle density in the region, measured as either vehicles per node 

or vehicles per square kilometer/mile. If vehicle density is quite high, it is unlikely that bi-criteria 

pathfinding is beneficial as there will always be vehicles relatively near potential future demands. 

Conversely, if vehicle density is low or moderate, the bi-criteria pathfinding may provide benefits 

as it will push the few vehicles in the network toward locations that are likely to generate demand.  

Conclusion 

This study proposes an operational policy for a shared-ride mobility-on-demand service 

(SRMoDS) service that involves assigning vehicles to network paths considering the paths’ travel 

time and their proximity to potential future demands. One subcomponent of this operational 

problem involves assigning expected potential future demand to links. This study formulates the 

assignment of vehicles to bi-criteria paths as an optimization problem. The study evaluates the 

effectiveness of the bi-criteria pathfinding approach using the network and demand data for 

Anaheim, CA.  

Simulation results indicate that bi-criteria pathfinding can reduce both waiting time and in-

vehicle travel time for travelers. However, the average improvement is relatively small and there 

is pretty large variance regarding the performance gap between bi-criteria and shortest path 

approaches. The study also finds that the effectiveness of bi-criteria pathfinding is determined 

by multiple factors, including the number of vehicles, the number of requests, network size, bi-

criteria conditions, and reward coefficients. Simulation results indicate that the bi-criteria 

pathfinding approach performs best with a slight under- or over-supply of vehicles relative to 

demand. The study also finds that bi-criteria pathfinding works best when vehicles are empty or 

only have one remaining drop-off task and no pickup tasks.  
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This research provides evidence that bi-criteria pathfinding can improve the operational 

effectiveness of SRMoDS and likely other ride-sharing services. However, further research, 

particularly tuning hyperparameters in the optimization model as a function of the state of 

individual vehicles and each region’s spatial imbalance between supply and demand, will likely 

indicate significantly larger operational benefits associated with bi-criteria pathfinding.  
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Data Management Plan  

Products of Research  
1. Data 

a. Anaheim Road Network data 
b. Anaheim Demand data 
c. Anaheim Link Demand 

2. Software/Algorithms 
a. Shared-ride mobility-on-demand service fleet simulation model 
b. Vehicle-traveler assignment model and solution algorithm 
c. Pickup and drop-off task sequencing model and solution algorithm 
d. Bi-criteria pathfinding model and solution algorithm 

 
Data Format and Content  

1. Anaheim Road Network data: 
a. anaheim_nxgraph.pickle - Contains the Anaheim road network data 

encompassing nodes and links stored in a serializable pickle format. 
 of a python networkx object. 

b. Anaheim_SPskims.pickle - Contains the shortest paths as well as shortest travel 
time costs between all Origin-Destination pairs in the Anaheim network, stored 
as a Python dictionary object in a serializable pickle data type. 

2. Anaheim Demand data: 
a. anaheim_odtable.csv - Contains total person trip travel demand between Origin 

and Destination Nodes in the Anaheim Network for 1 hour period. 
3. Anaheim Link Demand data: 

a. t_180_mins_uniform_anaheim_demtime_30_modeshare_0.05.pickle - Contains 
potential shared ride trip demand data for all links in the network in the 
direction of an O-D pair for each time period, for a uniform demand distribution. 

 
Data Access and Sharing  
The data and software are available at the following link: 

https://datadryad.org/stash/share/Wz0uJ9u9eeq4S_thyKofuzcEgbQjIE0IuA3bOBj_t70 

 

https://datadryad.org/stash/share/Wz0uJ9u9eeq4S_thyKofuzcEgbQjIE0IuA3bOBj_t70
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